Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Ecol Evol ; 14(4): e11245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601857

RESUMO

Genetic variation in Arctic species is often influenced by vicariance during the Pleistocene, as ice sheets fragmented the landscape and displaced populations to low- and high-latitude refugia. The formation of secondary contact or suture zones during periods of ice sheet retraction has important consequences on genetic diversity by facilitating genetic connectivity between formerly isolated populations. Brant geese (Branta bernicla) are a maritime migratory waterfowl (Anseriformes) species that almost exclusively uses coastal habitats. Within North America, brant geese are characterized by two phenotypically distinct subspecies that utilize disjunct breeding and wintering areas in the northern Pacific and Atlantic. In the Western High Arctic of Canada, brant geese consist of individuals with an intermediate phenotype that are rarely observed nesting outside this region. We examined the genetic structure of brant geese populations from each subspecies and areas consisting of intermediate phenotypes using mitochondrial DNA (mtDNA) control region sequence data and microsatellite loci. We found a strong east-west partition in both marker types consistent with refugial populations. Within subspecies, structure was also observed at mtDNA while microsatellite data suggested the presence of only two distinct genetic clusters. The Western High Arctic (WHA) appears to be a secondary contact zone for both Atlantic and Pacific lineages as mtDNA and nuclear genotypes were assigned to both subspecies, and admixed individuals were observed in this region. The mtDNA sequence data outside WHA suggests no or very restricted intermixing between Atlantic and Pacific wintering populations which is consistent with published banding and telemetry data. Our study indicates that, although brant geese in the WHA are not a genetically distinct lineage, this region may act as a reservoir of genetic diversity and may be an area of high conservation value given the potential of low reproductive output in this species.

2.
Sci Rep ; 14(1): 6750, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514730

RESUMO

Signals for the maintenance of epithelial homeostasis are provided in part by commensal bacteria metabolites, that promote tissue homeostasis in the gut and remote organs as microbiota metabolites enter the bloodstream. In our study, we investigated the effects of bile acid metabolites, 3-oxolithocholic acid (3-oxoLCA), alloisolithocholic acid (AILCA) and isolithocholic acid (ILCA) produced from lithocholic acid (LCA) by microbiota, on the regulation of innate immune responses connected to the expression of host defense peptide cathelicidin in lung epithelial cells. The bile acid metabolites enhanced expression of cathelicidin at low concentrations in human bronchial epithelial cell line BCi-NS1.1 and primary bronchial/tracheal cells (HBEpC), indicating physiological relevance for modulation of innate immunity in airway epithelium by bile acid metabolites. Our study concentrated on deciphering signaling pathways regulating expression of human cathelicidin, revealing that LCA and 3-oxoLCA activate the surface G protein-coupled bile acid receptor 1 (TGR5, Takeda-G-protein-receptor-5)-extracellular signal-regulated kinase (ERK1/2) cascade, rather than the nuclear receptors, aryl hydrocarbon receptor, farnesoid X receptor and vitamin D3 receptor in bronchial epithelium. Overall, our study provides new insights into the modulation of innate immune responses by microbiota bile acid metabolites in the gut-lung axis, highlighting the differences in epithelial responses between different tissues.


Assuntos
Ácidos e Sais Biliares , Catelicidinas , Humanos , Ácidos e Sais Biliares/metabolismo , Catelicidinas/metabolismo , Sistema de Sinalização das MAP Quinases , Receptores Acoplados a Proteínas G/metabolismo , Epitélio/metabolismo , Ácido Litocólico/farmacologia , Ácido Litocólico/metabolismo
3.
Zoological Lett ; 9(1): 21, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974237

RESUMO

We report two Arctic species of incirrate octopods new to science. One is formally described here as Muusoctopus aegir Golikov, Gudmundsson & Sabirov sp. nov. while the other, Muusoctopus sp. 1, is not formally described due to a limited number of samples (all are immature individuals). These two species differ from each other, and from other Muusoctopus, especially in: 1) absence of stylets (in M. aegir sp. nov.); 2) proportions of mantle and head; 3) funnel organ morphology (W-shaped with medial and marginal limbs of equal length in M. aegir sp. nov., or medial are slightly longer; V V-shaped with medial limbs slightly longer and broader than marginal in Muusoctopus sp. 1); 4) sucker and gill lamellae counts; 5) relative arm length and sucker diameter; and 6) male reproductive system relative size and morphology. Species of Muusoctopus now comprise four of 12 known Arctic cephalopods. Additionally, this study provides: a) new data on the morphology and reproductive biology of M. johnsonianus and M. sibiricus, and a diagnosis of M. sibiricus; b) the equations to estimate mantle length and body mass from beak measurements of M. aegir sp. nov. and M. johnsonianus; c) a cytochrome c oxidase subunit I gene barcode for M. sibiricus; d) new data on the ecology and distribution of all studied species; and e) a data table for the identification of northern North Atlantic and Arctic species of Muusoctopus.

4.
Fish Shellfish Immunol ; 143: 109214, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977544

RESUMO

As one of short-chain fatty acids, butyrate is an important metabolite of dietary fiber by the fermentation of gut commensals. Our recent study uncovered that butyrate promoted IL-22 production in fish macrophages to augment the host defense. In the current study, we further explored the underlying signaling pathways in butyrate-induced IL-22 production in fish macrophages. Our results showed that butyrate augmented the IL-22 expression in head kidney macrophages (HKMs) of turbot through binding to G-protein receptor 41 (GPR41) and GPR43. Moreover, histone deacetylase 3 (HDAC3) inhibition apparently up-regulated the butyrate-enhanced IL-22 generation, indicating HDACs were engaged in butyrate-regulated IL-22 secretion. In addition, butyrate triggered the STAT3/HIF-1α signaling to elevate the IL-22 expression in HKMs. Importantly, the evidence in vitro and in vivo was provided that butyrate activated autophagy in fish macrophages via IL-22 signaling, which contributing to the elimination of invading bacteria. In conclusion, we clarified in the current study that butyrate induced STAT3/HIF-1α/IL-22 signaling pathway via GPCR binding and HDAC3 inhibition in fish macrophages to activate autophagy that was involved in pathogen clearance in fish macrophages.


Assuntos
Butiratos , Linguados , Animais , Butiratos/metabolismo , Linguados/metabolismo , Rim Cefálico/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Autofagia , Interleucina 22
5.
Front Immunol ; 14: 1197908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251385

RESUMO

Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.


Assuntos
Imunidade Inata , Sistema Respiratório , Humanos , Epitélio , Citocinas , Quimiocinas
6.
Gut Microbes ; 15(1): 2187575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36879441

RESUMO

Although evidence has shown that vitamin D (VD) influences gut homeostasis, limited knowledge is available how VD regulates intestinal immunity against bacterial infection. In the present study, cyp2r1 mutant zebrafish, lacking the capacity to metabolize VD, and zebrafish fed a diet devoid of VD, were utilized as VD-deficient animal models. Our results confirmed that the expression of antimicrobial peptides (AMPs) and IL-22 was restrained and the susceptibility to bacterial infection was increased in VD-deficient zebrafish. Furthermore, VD induced AMP expression in zebrafish intestine by activating IL-22 signaling, which was dependent on the microbiota. Further analysis uncovered that the abundance of the acetate-producer Cetobacterium in VD-deficient zebrafish was reduced compared to WT fish. Unexpectedly, VD promoted the growth and acetate production of Cetobacterium somerae under culture in vitro. Importantly, acetate treatment rescued the suppressed expression of ß-defensins in VD-deficient zebrafish. Finally, neutrophils contributed to VD-induced AMP expression in zebrafish. In conclusion, our study elucidated that VD modulated gut microbiota composition and production of short-chain fatty acids (SCFAs) in zebrafish intestine, leading to enhanced immunity.


Assuntos
Microbioma Gastrointestinal , Vitamina D , Animais , Peixe-Zebra , Vitaminas , Acetatos , Clostridiales
7.
Mol Immunol ; 155: 153-164, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36812763

RESUMO

In the current context of antibiotic resistance, the need to find alternative treatment strategies is urgent. Our research aimed to use synthetized aroylated phenylenediamines (APDs) to induce the expression of cathelicidin antimicrobial peptide gene (CAMP) to minimize the necessity of antibiotic use during infection. One of these compounds, HO53, showed promising results in inducing CAMP expression in bronchial epithelium cells (BCi-NS1.1 hereafter BCi). Thus, to decipher the cellular effects of HO53 on BCi cells, we performed RNA sequencing (RNAseq) analysis after 4, 8 and 24 h treatment of HO53. The number of differentially expressed transcripts pointed out an epigenetic modulation. Yet, the chemical structure and in silico modeling indicated HO53 as a histone deacetylase (HDAC) inhibitor. When exposed to a histone acetyl transferase (HAT) inhibitor, BCi cells showed a decreased expression of CAMP. Inversely, when treated with a specific HDAC3 inhibitor (RGFP996), BCi cells showed an increased expression of CAMP, indicating acetylation status in cells as determinant for the induction of the expression of the gene CAMP expression. Interestingly, a combination treatment with both HO53 and HDAC3 inhibitor RGFP966 leads to a further increase of CAMP expression. Moreover, HDAC3 inhibition by RGFP966 leads to increased expression of STAT3 and HIF1A, both previously demonstrated to be involved in pathways regulating CAMP expression. Importantly, HIF1α is considered as a master regulator in metabolism. A significant number of genes of metabolic enzymes were detected in our RNAseq data with enhanced expression conveying a shift toward enhanced glycolysis. Overall, we are demonstrating that HO53 might have a translational value against infections in the future through a mechanism leading to innate immunity strengthening involving HDAC inhibition and shifting the cells towards an immunometabolism, which further favors innate immunity activation.


Assuntos
Inibidores de Histona Desacetilases , Histonas , Histonas/metabolismo , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Imunidade Inata , Fenilenodiaminas/farmacologia , Catelicidinas
8.
Fish Shellfish Immunol ; 133: 108545, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36642352

RESUMO

IL-22 has been characterized as a critical cytokine in maintaining barrier integrity and host immunity. So far, it has been known that IL-22 is mainly produced by lymphoid lineage cells. In the present study, we have thoroughly investigated butyrate-induced production and function of IL-22 in fish macrophages. Our results demonstrated that short-chain fatty acids (SCFAs), major microbiota-derived metabolites, promoted the expression of IL-22 in head kidney macrophages (HKMs) of turbot (Scophthalmus maximus L.). Interestingly, butyrate-mediated intracellular bacterial killing in HKMs diminished when IL-22 expression was interfered. Furthermore, the turbot fed the diet containing sodium butyrate (NaB) exhibited significantly lower mortality after bacterial infection, compared to the fish fed a basal diet. At the meantime, a higher level of IL-22 expression and bactericidal activity was detected in HKMs from the turbot fed NaB-supplemented diet. In addition, NaB treatment promoted the expression of antimicrobial peptides (AMPs) ß-defensins in zebrafish (Danio rerio). However, butyrate-induced expression of AMPs was reduced in IL-22 mutant zebrafish compared to wild-type (WT) fish. Meanwhile, NaB treatment was incapable to protect IL-22 mutant fish from bacterial infection as it did in WT zebrafish. Importantly, our results demonstrated that IL-22 expression was remarkably suppressed in macrophage-depleted zebrafish, indicating that macrophage might be a cell source of IL-22 production in vivo. In conclusion, all these findings collectively revealed that SCFAs regulated the production and function of IL-22 in fish macrophages, which facilitated host resistance to bacterial invasion.


Assuntos
Interleucinas , Peixe-Zebra , Animais , Interleucinas/genética , Interleucinas/metabolismo , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Macrófagos , Ácidos Graxos Voláteis/metabolismo , Bactérias , Interleucina 22
9.
J Innate Immun ; 14(5): 477-492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35078192

RESUMO

Aroylated phenylenediamines (APDs) are novel modulators of innate immunity with respect to enhancing the expression of antimicrobial peptides and maintaining epithelial barrier integrity. Here, we present a new study on induction of autophagy in human lung epithelial cells by the APD HO53. Interestingly, HO53 affected autophagy in a dose-dependent manner, demonstrated by increased microtubule-associated proteins 1A/1B light-chain 3B (LC3B) processing in mature polarized bronchial epithelial cells. The quantification of LC3B puncta showed increased autophagy flux and formation of autophagosomes visualized by transmission electron microscopy. The phenotypic changes indicated that autophagy induction was associated with activation of 5' adenosine monophosphate-activated protein kinase (AMPK), nuclear translocation of transcription factor EB (TFEB), and changes in expression of autophagy-related genes. The kinetics of the explored signaling pathways indicated on activation of AMPK followed by the nuclear translocation of TFEB. Moreover, our data suggest that HO53 modulates epigenetic changes related to induction of autophagy manifested by transcriptional regulation of histone-modifying enzymes. These changes were reflected by decreased ubiquitination of histone 2B at the lysine 120 residue that is associated with autophagy induction. Taken together, HO53 modulates autophagy, a part of the host defense system, through a complex mechanism involving several pathways and epigenetic events.


Assuntos
Proteínas Quinases Ativadas por AMP , Histonas , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Histonas/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos
10.
J Innate Immun ; 14(3): 229-242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34564076

RESUMO

Vitamin D (VD) is a major regulator of calcium metabolism in many living organisms. In addition, VD plays a key role in regulating innate and adaptive immunity in vertebrates. Neutrophils constitute an important part of the first line of defense against invading microbes; however, the potential effect of VD on neutrophils remains elusive. Thus, in this study zebrafish in different developmental stages were utilized to identify the potential role of VD in the basal homeostasis and functions of neutrophils. Our results showed that addition of exogenous VD3 promoted granulopoiesis in zebrafish larvae. Reciprocally, neutrophil abundance in the intestine of adult zebrafish with a cyp2r1 mutant, lacking the capacity to 25-hydroxylate VD, was reduced. Moreover, VD-mediated granulopoiesis was still observed in gnotobiotic zebrafish larvae, indicating that VD regulates neutrophil generation independent of the microbiota during early development. In contrast, VD was incapable to influence granulopoiesis in adult zebrafish when the commensal bacteria were depleted by antibiotic treatment, suggesting that VD might modulate neutrophil activity via different mechanisms depending on the developmental stage. In addition, we found that VD3 augmented the expression of il-8 and neutrophil recruitment to the site of caudal fin amputation. Finally, VD3 treatment significantly decreased bacterial counts and mortality in zebrafish infected with Edwardsiella tarda (E. tarda) in a neutrophil-dependent manner. Combined, these findings demonstrate that VD regulates granulopoiesis and neutrophil function in zebrafish immunity.


Assuntos
Neutrófilos , Peixe-Zebra , Animais , Larva , Infiltração de Neutrófilos , Vitamina D/metabolismo , Vitamina D/farmacologia
11.
Sci Rep ; 10(1): 21506, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299075

RESUMO

Trophic niche and diet comparisons among closely sympatric marine species are important to understand complex food webs, particularly in regions most affected by climate change. Using stable isotope analyses, all ontogenetic stages of three sympatric species of Arctic cephalopods (genus Rossia) were studied to assess inter- and intraspecific competition with niche and diet overlap and partitioning in West Greenland and the Barents Sea. Seven traits related to resource and habitat utilization were identified in Rossia: no trait was shared by all three species. High boreal R. megaptera and Arctic endemic R. moelleri shared three traits with each other, while both R. megaptera and R. moelleri shared only two unique traits each with widespread boreal-Arctic R. palpebrosa. Thus all traits formed fully uncrossing pattern with each species having unique strategy of resource and habitat utilization. Predicted climate changes in the Arctic would have an impact on competition among Rossia with one potential 'winner' (R. megaptera in the Barents Sea) but no potential 'losers'.


Assuntos
Decapodiformes/metabolismo , Animais , Regiões Árticas , Cefalópodes/metabolismo , Mudança Climática , Decapodiformes/genética , Dieta , Ecossistema , Cadeia Alimentar , Especiação Genética , Estado Nutricional , Simpatria/genética
12.
Infect Immun ; 88(8)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32513857

RESUMO

Infections caused by multidrug-resistant (MDR) Klebsiella pneumoniae are difficult to treat with conventional antibiotics. Thus, alternative strategies to control the growth of MDR Klebsiella are warranted. We hypothesized that activation of innate effector systems could sensitize MDR K. pneumoniae to conventional antibiotics. Thus, human primary macrophages were stimulated with compounds known to activate innate immunity (vitamin D3, phenylbutyrate [PBA], and the aroylated phenylenediamine HO53) and then infected with MDR Klebsiella in the presence or absence of antibiotics. Antibiotics alone were ineffective against MDR Klebsiella in the cellular model, whereas vitamin D3, PBA, and HO53 reduced intracellular growth by up to 70%. The effect was further improved when the innate activators were combined with antibiotics. Vitamin D3- and PBA-induced bacterial killing was dependent on CAMP gene expression, whereas HO53 needed the production of reactive oxygen species (ROS), as shown in cells where the CYBB gene was silenced and in cells from a patient with reduced ROS production due to a deletion in the CYBB gene and skewed lyonization. The combination of innate effector activation by vitamin D3, PBA, and HO53 was effective in sensitizing MDR Klebsiella to conventional antibiotics in a primary human macrophage model. This study provides new evidence for future treatment options for K. pneumoniae.


Assuntos
Antibacterianos/farmacologia , Colecalciferol/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Fenilbutiratos/farmacologia , Fenilenodiaminas/farmacologia , Peptídeos Catiônicos Antimicrobianos/deficiência , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Sinergismo Farmacológico , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , NADPH Oxidase 2/deficiência , NADPH Oxidase 2/genética , NADPH Oxidase 2/imunologia , Fagocitose/efeitos dos fármacos , Cultura Primária de Células , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Catelicidinas
13.
Front Immunol ; 11: 1209, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595649

RESUMO

The innate immune system constitutes the first line of defense against invading pathogens, regulating the normal microbiota and contributes to homeostasis. Today we have obtained detailed knowledge on receptors, signaling pathways, and effector molecules of innate immunity. Our research constellation has focused on ways to induce the expression of antimicrobial peptides (AMPs), the production of oxygen species (ROS and NO), and to activate autophagy, during the last two decades. These innate effectors, with different mechanisms of action, constitute a powerful defense armament in phagocytes and in epithelial cells. Innate immunity does not only protect the host from invading pathogens, but also regulates the composition of the microbiota, which is an area of intense research. Notably, some virulent bacteria have the capacity to downregulate innate defenses and can thereby cause invasive disease. Understanding the detailed mechanisms behind pathogen-mediated suppression of innate effectors are currently in progress. This information can be of importance for the development of novel treatments based on counteraction of the downregulation; we have designated this type of treatment as host directed therapy (HDT). The concept to boost innate immunity may be particularly relevant as many pathogens are developing resistance against classical antibiotics. Many pathogens that are resistant to antibiotics are sensitive to the endogenous effectors included in early host defenses, which contain multiple effectors working in cooperation to control infections. Here, we review recent data related to downregulation of AMPs by pathogenic bacteria, induction of innate effector mechanisms, including cytokine-mediated effects, repurposed drugs and the role of antibiotics as direct modulators of host responses. These findings can form a platform for the development of novel treatment strategies against infection and/or inflammation.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Infecções/imunologia , Animais , Humanos
14.
ALTEX ; 37(4): 545-560, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32449787

RESUMO

Azithromycin (AZM) is a broad-spectrum antibiotic widely used to treat infections. AZM also has been shown to have anti-inflammatory and immunomodulatory functions unrelated to its antibacterial activity that contribute to the effectiveness of this drug in chronic respiratory diseases. The mechanisms behind these beneficial effects are not yet fully elucidated. We have previously shown that AZM enhances barrier integrity of bronchial epithelial cells and directs them towards epidermal differentiation. In this study, we analyzed the effect of AZM pre-treatment of human bronchial and alveolar derived cell lines on mechanical stress in a cyclical pressure air-liquid interface device (CPAD) that models the disruption of the epithelial barrier with increased inflammatory response in lung tissue, which is associated with ventilator-induced lung injury (VILI). Immunostaining and electron microscopy showed that barrier integrity of the epithelium was compromised by cyclically stressing the cells but maintained when cells had been pre-treated with AZM. Lamellar body formation was revealed in AZM pre-treated cells, possibly further supporting the barrier-enhancing effects. RNA sequencing showed that the inflammatory response was attenuated by AZM treatment before cyclical stress. YKL-40, an emerging inflammatory marker, increased both due to cyclical stress and upon AZM treatment. These data confirm the usefulness of the CPAD to model ventilator-induced lung injury and suggest that AZM has barrier protective and immunomodulatory effects, attenuating the inflammatory response during mechanical stress, and might therefore be lung protective during mechanical ventilation. The model could be used to assess further drug candidates that influence barrier integrity and modulate inflammatory response.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Células Epiteliais/efeitos dos fármacos , Pulmão/citologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Alternativas aos Testes com Animais , Diferenciação Celular , Linhagem Celular , Humanos
15.
Antibiotics (Basel) ; 9(1)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936156

RESUMO

Tuberculosis (TB) is one of the leading causes of mortality and morbidity, particularly in developing countries, presenting a major threat to the public health. The currently recommended long term treatment regimen with multiple antibiotics is associated with poor patient compliance, which in turn, may contribute to the emergence of multi-drug resistant TB (MDR-TB). The low global treatment efficacy of MDR-TB has highlighted the necessity to develop novel treatment options. Host-directed therapy (HDT) together with current standard anti-TB treatments, has gained considerable interest, as HDT targets novel host immune mechanisms. These immune mechanisms would otherwise bypass the antibiotic bactericidal targets to kill Mycobacterium tuberculosis (Mtb), which may be mutated to cause antibiotic resistance. Additionally, host-directed therapies against TB have been shown to be associated with reduced lung pathology and improved disease outcome, most likely via the modulation of host immune responses. This review will provide an update of host-directed therapies and their mechanism(s) of action against Mycobacterium tuberculosis.

16.
Sci Rep ; 9(1): 19099, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836823

RESUMO

Vampyroteuthis infernalis Chun, 1903, is a widely distributed deepwater cephalopod with unique morphology and phylogenetic position. We assessed its habitat and trophic ecology on a global scale via stable isotope analyses of a unique collection of beaks from 104 specimens from the Atlantic, Pacific and Indian Oceans. Cephalopods typically are active predators occupying a high trophic level (TL) and exhibit an ontogenetic increase in δ15N and TL. Our results, presenting the first global comparison for a deep-sea invertebrate, demonstrate that V. infernalis has an ontogenetic decrease in δ15N and TL, coupled with niche broadening. Juveniles are mobile zooplanktivores, while larger Vampyroteuthis are slow-swimming opportunistic consumers and ingest particulate organic matter. Vampyroteuthis infernalis occupies the same TL (3.0-4.3) over its global range and has a unique niche in deep-sea ecosystems. These traits have enabled the success and abundance of this relict species inhabiting the largest ecological realm on the planet.


Assuntos
Ecologia , Comportamento Alimentar , Isótopos de Nitrogênio/análise , Octopodiformes/fisiologia , Animais , Mudança Climática , Ecossistema , Geografia , Oxigênio/metabolismo , Filogenia
17.
Respir Res ; 20(1): 129, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234850

RESUMO

BACKGROUND: Azithromycin (Azm) is a macrolide recognized for its disease-modifying effects and reduction in exacerbation of chronic airway diseases. It is not clear whether the beneficial effects of Azm are due to its anti-microbial activity or other pharmacological actions. We have shown that Azm affects the integrity of the bronchial epithelial barrier measured by increased transepithelial electrical resistance. To better understand these effects of Azm on bronchial epithelia we have investigated global changes in gene expression. METHODS: VA10 bronchial epithelial cells were treated with Azm and cultivated in air-liquid interface conditions for up to 22 days. RNA was isolated at days 4, 10 and 22 and analyzed using high-throughput RNA sequencing. qPCR and immunostaining were used to confirm key findings from bioinformatic analyses. Detailed assessment of cellular changes was done using microscopy, followed by characterization of the lipidomic profiles of the multivesicular bodies present. RESULTS: Bioinformatic analysis revealed that after 10 days of treatment genes encoding effectors of sterol and cholesterol metabolism were prominent. Interestingly, expression of genes associated with epidermal barrier differentiation, KRT1, CRNN, SPINK5 and DSG1, increased significantly at day 22. Together with immunostaining, these results suggest an epidermal differentiation pattern. We also found that Azm induced the formation of multivesicular and lamellar bodies in two different airway epithelial cell lines. Lipidomic analysis revealed that Azm was entrapped in multivesicular bodies linked to different types of lipids, most notably palmitate and stearate. Furthermore, targeted analysis of lipid species showed accumulation of phosphatidylcholines, as well as ceramide derivatives. CONCLUSIONS: Taken together, we demonstrate how Azm might confer its barrier enhancing effects, via activation of epidermal characteristics and changes to intracellular lipid dynamics. These effects of Azm could explain the unexpected clinical benefit observed during Azm-treatment of patients with various lung diseases affecting barrier function.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Corpos Multivesiculares/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Epiderme/metabolismo , Humanos , Corpos Multivesiculares/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo
18.
ALTEX ; 36(4): 634-642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31210276

RESUMO

Mechanical ventilation (MV) is a life-saving therapy for critically ill patients, alleviating the work of breathing and supporting adequate gas exchange. However, MV can cause ventilator induced lung injury (VILI) by baro/volu- and atelectrauma, even lead to acute respiratory distress syndrome (ARDS), and substantially augment mortality. There is a need for specific biomarkers and novel research platforms for VILI/ARDS research to study these detrimental disorders and seek ways to avoid or prevent them. Previous in vitro studies on bronchial epithelium, cultured in air-liquid interface (ALI) conditions, have generally utilized static or constant pressure.  We have developed a Cyclical Pressure ALI Device (CPAD) that enables cyclical stress on ALI cultured human bronchial cells, with the aim of mimicking the effects of MV. Using CPAD we were able to analyze differentially expressed VILI/ARDS and innate immunity associated genes along with increased expression of associated proteins. CPAD provides an easy and accessible way to analyze functional and phenotypic changes that occur during VILI and may provide a platform for future drug testing.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica , Lesão Pulmonar Aguda/mortalidade , Biomarcadores , Brônquios/citologia , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/citologia , Humanos , Immunoblotting , Pressões Respiratórias Máximas , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Fenótipo , Respiração por Pressão Positiva Intrínseca , Impressão Tridimensional , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Reversa , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/complicações , Lesão Pulmonar Induzida por Ventilação Mecânica/mortalidade
19.
Sci Rep ; 9(1): 7114, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068616

RESUMO

Aroylated phenylenediamines (APDs) are novel inducers of innate immunity enhancing cathelicidin gene expression in human bronchial epithelial cell lines. Here we present two newly developed APDs and aimed at defining the response and signaling pathways for these compounds with reference to innate immunity and antimicrobial peptide (AMP) expression. Induction was initially defined with respect to dose and time and compared with the APD Entinostat (MS-275). The induction applies to several innate immunity effectors, indicating that APDs trigger a broad spectrum of antimicrobial responses. The bactericidal effect was shown in an infection model against Pseudomonas aeruginosa by estimating bacteria entering cells. Treatment with a selected APD counteracted Pseudomonas mediated disruption of epithelial integrity. This double action by inducing AMPs and enhancing epithelial integrity for one APD compound is unique and taken as a positive indication for host directed therapy (HDT). The APD effects are mediated through Signal transducer and activator of transcription 3 (STAT3) activation. Utilization of induced innate immunity to fight infections can reduce antibiotic usage, might be effective against multidrug resistant bacteria and is in line with improved stewardship in healthcare.


Assuntos
Antibacterianos/farmacologia , Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fenilenodiaminas/farmacologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Benzamidas/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Interleucina-8/genética , Interleucina-8/metabolismo , Infecções por Pseudomonas/microbiologia , Piridinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Catelicidinas
20.
Mater Sci Eng C Mater Biol Appl ; 93: 782-789, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30274112

RESUMO

Ventilator associated pneumonia and sepsis are frequent complications in neonatal care. Bacterial colonization of medical devices and interfaces used for respiratory support may contribute by functioning as a bacterial reservoir seeding bacteria into airways. We have developed an antibacterial surface coating based on a cysteine ligand covalently coupled via a spacer to a carboxylic backbone layer on an acrylic acid grafted silicone surface. This coating was applied on a commercially available nasal prong and the antibacterial effect was evaluated both in vitro and in vivo in a first-in-human phase 1 trial. The coated nasal prongs had strong antibacterial activity against both Gram-negative and Gram-positive bacteria in vitro. In a randomized pre-clinical trial study of 24 + 24 healthy adult volunteers who carried coated or non-coated nasal prongs for 18 h, a 10log difference in mean bacterial colonization of 5.82 (p < 0.0001) was observed. These results show that this coating technique can prevent colonization by the normal skin and mucosal flora, and thus represent a promising novel technology for reduction of medical device-associated hospital acquired infections.


Assuntos
Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Pneumonia Associada à Ventilação Mecânica/prevenção & controle , Respiração Artificial/instrumentação , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia Associada à Ventilação Mecânica/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...